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Fi1G. 4. Family of heat flow curves as calculated using Eq. (26); d = 3.36 4, v. = 0, A
as given by Vinen (4). Dashed lines across the heat flow curves indicate several regions
useful in interpreting the vortex line model used for the ecaleulations (see Section V).
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FiG. 5. Pereent deviation of caleulated heat flow with respect to observed heat flow as a
funetion of initial temperature 7', for various values of the reduced temperature parameter
(T, — To)/(Tx — Ty; solid curves: d = 3.36 u; dashed curves: d = 2.12 4.
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